Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet - 25

Normal and Self-Adjoint Operators

1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
(a) Every self-adjoint operator is normal.
(b) Operators and their adjoints have the same eigenvectors.
(c) If T is an operator on an inner product space V, then T is normal if and only if $[T]_{\beta}$ is normal, where β is any ordered basis for V.
(d) A real or complex matrix A is normal if and only if L_{A} is normal.
(e) The eigenvalues of a self-adjoint operator must all be real.
(f) The identity and zero operators are self-adjoint.
(g) Every normal operator is diagonalizable.
(h) Every self-adjoint operator is diagonalizable.
2. For each linear operator T on an inner product space V, determine whether T is normal, selfadjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.
(a) $V=\mathbb{R}^{2}$ and T is defined by $T(a, b)=(2 a-2 b,-2 a+5 b)$.
(b) $V=\mathbb{R}^{3}$ and T is defined by $T(a, b, c)=(-a+b, 5 b, 4 a-2 b+5 c)$.
(c) $V=\mathbb{C}^{2}$ and T is defined by $T(a, b)=(2 a+i b, a+2 b)$.
(d) $V=P_{2}(\mathbb{R})$ and T is defined by $T(f)=f^{\prime}$, where

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

(e) $V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T(A)=A^{t}$.
(f) $V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)$.
3. Give an example of a linear operator T on \mathbb{R}^{2} and an ordered basis for \mathbb{R}^{2} that provides a counterexample to the statement : If T is an operator on an inner product space V, then T is normal if and only if $[T]_{\beta}$ is normal, where β is any ordered basis for V.
4. Let T and U be self-adjoint operators on an inner product space V. Prove that $T U$ is self-adjoint if and only if $T U=U T$.
5. Let V be an inner product space, and let T be a normal operator on V. Prove that $T-c I$ is normal for every $c \in F$.
6. Let V be a complex inner product space, and let T be a linear operator on V. Define

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \quad \text { and } \quad T_{2}=\frac{1}{2 i}\left(T-T^{*}\right) .
$$

(a) Prove that T_{1} and T_{2} are self-adjoint and that $T=T_{1}+i T_{2}$.
(b) Suppose also that $T=U_{1}+i U_{2}$, where U_{1} and U_{2} are self-adjoint. Prove that $U_{1}=T_{1}$ and $U_{2}=T_{2}$.
(c) Prove that T is normal if and only if $T_{1} T_{2}=T_{2} T_{1}$.
7. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
(a) If T is self-adjoint, then T_{w} is self-adjoint.
(b) W^{\perp} is T^{*}-invariant.
(c) If W is both T - and T^{*}-invariant, then $\left(T_{W}\right)^{*}=\left(T^{*}\right)_{W}$.
(d) If W is both T - and T^{*}-invariant and T is normal, then T_{W} is normal.
8. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. Prove that if W is T-invariant, then W is also T^{*}-invariant.
9. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T)=$ $N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.
10. Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$

$$
\|T(x) \pm i x\|^{2}=\|T(x)\|^{2}+\|x\|^{2} .
$$

Deduce that $T-i I$ is invertible and that $\left[(T-i I)^{-1}\right]^{*}=(T+i I)^{-1}$.
11. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner product space V with an adjoint T^{*}. Prove the following results.
(a) If T is self-adjoint, then $\langle T(x), x\rangle$ is real for all $x \in V$.
(b) If T satisfies $\langle T(x), x\rangle=0$ for all $x \in V$, then $T=T_{0}$.

Hint: Replace x by $x+y$ and then by $x+i y$, and expand the resulting inner products.
(c) If $\langle T(x), x\rangle$ is real for all $x \in V$, then $T=T^{*}$.
12. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence prove that T is self-adjoint.
13. Theorem : Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.
An $n \times n$ real matrix A is said to be a Gramian matrix if there exists a real (square) matrix B such that $A=B^{t} B$. Prove that A is a Gramian matrix if and only if A is symmetric and all of its eigenvalues are nonnegative.
Hint: Apply the above Theorem to $T=L_{A}$ to obtain an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of eigenvectors with the associated eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Define the linear operator U by $U\left(v_{i}\right)=\sqrt{\lambda_{i}} v_{i}$.
14. Simultaneous Diagonalization. Let V be a finite-dimensional real inner product space, and let U and T be self-adjoint linear operators on V such that $U T=T U$. Prove that there exists an orthonormal basis for V consisting of vectors that are eigenvectors of both U and T. (Note that the complex version of this result also holds good.)
Hint: For any eigenspace $W=E_{\lambda}$ of T, we have that W is both T - and U-invariant and that W^{\perp} is both T - and U-invariant.
15. Let A and B be symmetric $n \times n$ matrices such that $A B=B A$. Use Exercise 14 to prove that there exists an orthogonal matrix P such that $P^{t} A P$ and $P^{t} B P$ are both diagonal matrices.
16. Prove the Cayley Hamilton theorem for a complex $n \times n$ matrix A. That is, if $f(t)$ is the characteristic polynomial of A, prove that $f(A)=O$.
Hint: Use Schur's theorem to show that A may be assumed to be upper triangular, in which case

$$
f(t)=\prod_{i=1}^{n}\left(A_{i i}-t\right) .
$$

Now if $T=L_{A}$, we have $\left(A_{j j} \mathbf{l}-T\right)\left(e_{j}\right) \in \operatorname{span}\left(\left\{e_{1}, e_{2}, \ldots, e_{j-1}\right\}\right)$ for $j \geq 2$, where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the standard ordered basis for \mathbb{C}^{n}.

The following definitions are used in Exercises 17 through 23.
Definitions. A linear operator T on a finite-dimensional inner product space is called positive definite [positive semidefinite] if T is self-adjoint and $\langle T(x), x\rangle>0[\langle T(x), x\rangle \geq 0]$ for all $x \neq 0$.

An $n \times n$ matrix A with entries from \mathbb{R} or \mathbb{C} is called positive definite [positive semidefinite] if L_{A} is positive definite [positive semidefinite].
17. Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A=[T]_{\beta}$, where β is an orthonormal basis for V. Prove the following results.
(a) T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [nonnegative].
(b) T is positive definite if and only if

$$
\sum_{i, j} A_{i j} a_{j} \bar{a}_{i}>0 \text { for all nonzero } n \text {-tuples }\left(a_{1}, a_{2}, \ldots, a_{n}\right) .
$$

(c) T is positive semidefinite if and only if $A=B^{*} B$ for some square matrix B.
(d) If T and U are positive semidefinite operators such that $T^{2}=U^{2}$, then $T=U$.
(e) If T and U are positive definite operators such that $T U=U T$, then $T U$ is positive definite.
(f) T is positive definite [semidefinite] if and only if A is positive definite [semidefinite].

Because of (f), results analogous to items (a) through (d) hold for matrices as well as operators.
18. Let $T: V \rightarrow W$ be a linear transformation, where V and W are finite-dimensional inner product spaces. Prove the following results.
(a) $T^{*} T$ and $T T^{*}$ are positive semidefinite.
(b) $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$.
19. Let T and U be positive definite operators on an inner product space V. Prove the following results.
(a) $T+U$ is positive definite.
(b) If $c>0$, then $c T$ is positive definite.
(c) T^{-1} is positive definite.
20. Let V be an inner product space with inner product $\langle\cdot, \cdot\rangle$, and let T be a positive definite linear operator on V. Prove that $\langle x, y\rangle^{\prime}=\langle T(x), y\rangle$ defines another inner product on V.
21. Let V be a finite-dimensional inner product space, and let T and U be self-adjoint operators on V such that T is positive definite. Prove that both $T U$ and $U T$ are diagonalizable linear operators that have only real eigenvalues.
Hint: Show that UT is self-adjoint with respect to the inner product $\langle x, y\rangle^{\prime}=\langle T(x), y\rangle$. To show that $T U$ is self-adjoint, repeat the argument with T^{-1} in place of T.
22. This exercise provides a converse to Exercise 20. Let V be a finite-dimensional inner product space with inner product $\langle\cdot, \cdot\rangle$, and let $\langle\cdot, \cdot\rangle^{\prime}$ be any other inner product on V.
(a) Prove that there exists a unique linear operator T on V such that $\langle x, y\rangle^{\prime}=\langle T(x), y\rangle$ for all x and y in V.
Hint: Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis for V with respect to $\langle\cdot, \cdot \cdot\rangle$, and define a matrix A by $A_{i j}=\left\langle v_{j}, v_{i}\right\rangle^{\prime}$ for all i and j. Let T be the unique linear operator on V such that $[T]_{\beta}=A$.
(b) Prove that the operator T of (a) is positive definite with respect to both inner products.
23. Let U be a diagonalizable linear operator on a finite-dimensional inner product space V such that all of the eigenvalues of U are real. Prove that there exist positive definite linear operators T_{1} and T_{1}^{\prime} and self-adjoint linear operators T_{2} and T_{2}^{\prime} such that $U=T_{2} T_{1}=T_{1}^{\prime} T_{2}^{\prime}$.
Hint: Let $\langle\cdot, \cdot\rangle$ be the inner product associated with V, β a basis of eigenvectors for $U .\langle\cdot, \cdot\rangle^{\prime}$ the inner product on V with respect to which β is orthonormal, and T_{1} the positive definite operator according to Exercise 22. Show that U is self-adjoint with respect to $\langle\cdot, \cdot\rangle^{\prime}$ and $U=T_{1}^{-1} U^{*} T_{1}$ (the adjoint is with respect to $\langle\cdot, \cdot\rangle$). Let $T_{2}=T_{1}^{-1} U^{*}$.
24. This argument gives another proof of Schur's theorem. Let T be a linear operator on a finite dimensional inner product space V.
(a) Suppose that β is an ordered basis for V such that $[T]_{\beta}$ is an upper triangular matrix. Let γ be the orthonormal basis for V obtained by applying the Gram Schmidt orthogonalization process to β and then normalizing the resulting vectors. Prove that $[T]_{\gamma}$ is an upper triangular matrix.
(b) Recall that if the characteristic polynomial of T splits, then there is an ordered basis β for V such that $[T]_{\beta}$ is an upper triangular matrix.
(c) Use (b) and (a) to obtain an alternate proof of Schur's theorem.

